
ConnecTF: A platform to integrate transcription
factor–gene interactions and validate regulatory
networks
Matthew D. Brooks ,1,2 Che-Lun Juang ,1 Manpreet Singh Katari ,1 José M. Alvarez,1,3,4
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3 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
4 Millennium Institute for Integrative Biology (iBio), Santiago, Chile
5 Courant Institute for Mathematical Sciences, Department of Computer Science, New York University NY, USA

*Author for communication: gloria.coruzzi@nyu.edu (G.C.).
†Senior author.
M.D.B., C.-L.J., and M.S.K. designed the database and website, with input on content and functionalities from G.M.C.; C.-L.J. built the database and web-
site; A.P. performed the TARGET TF-validation experiments and H.-J.S. created the RNA-seq libraries; M.D.B. and J.M.A. analyzed the RNA-seq data; J.H.
and C.S. analyzed additional published datasets; J.C. contributed to the development of analysis tools; M.D.B. and G.M.C. conceived the project and
wrote the article, which all the authors revised.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the
Instructions for Authors (https://academic.oup.com/plphys) is: G.M.C. (gloria.coruzzi@nyu.edu).

Abstract
Deciphering gene regulatory networks (GRNs) is both a promise and challenge of systems biology. The promise lies in iden-
tifying key transcription factors (TFs) that enable an organism to react to changes in its environment. The challenge lies in
validating GRNs that involve hundreds of TFs with hundreds of thousands of interactions with their genome-wide targets
experimentally determined by high-throughput sequencing. To address this challenge, we developed ConnecTF, a species-
independent, web-based platform that integrates genome-wide studies of TF–target binding, TF–target regulation, and
other TF-centric omic datasets and uses these to build and refine validated or inferred GRNs. We demonstrate the func-
tionality of ConnecTF by showing how integration within and across TF–target datasets uncovers biological insights. Case
study 1 uses integration of TF–target gene regulation and binding datasets to uncover TF mode-of-action and identify po-
tential TF partners for 14 TFs in abscisic acid signaling. Case study 2 demonstrates how genome-wide TF–target data and
automated functions in ConnecTF are used in precision/recall analysis and pruning of an inferred GRN for nitrogen signal-
ing. Case study 3 uses ConnecTF to chart a network path from NLP7, a master TF in nitrogen signaling, to direct secondary
TF2s and to its indirect targets in a Network Walking approach. The public version of ConnecTF (https://ConnecTF.org)
contains 3,738,278 TF–target interactions for 423 TFs in Arabidopsis, 839,210 TF–target interactions for 139 TFs in maize
(Zea mays), and 293,094 TF–target interactions for 26 TFs in rice (Oryza sativa). The database and tools in ConnecTF will
advance the exploration of GRNs in plant systems biology applications for model and crop species.
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Introduction
Deciphering gene regulatory networks (GRN) is an impor-
tant task, as it can reveal regulatory loci, like transcription
factors (TFs), that are crucial for development, stress
responses, or disease, with potential applications in agricul-
ture and medicine (Petricka et al., 2012; Chatterjee and
Ahituv, 2017; Gupta and Singh, 2019). However, integrating
experimentally validated connections between TFs and their
genome-wide target genes in such GRNs remains a
challenge.

With the advent of next-generation sequencing, there are
a growing number of methods to validate TF–target gene
connections within GRNs, each with its own set of benefits
and drawbacks. Methods that provide evidence for where a
TF is likely to bind to the genome include: chromatin im-
munoprecipitation sequencing (ChIP-seq), DNA affinity puri-
fication sequencing (DAP-seq; O’Malley et al., 2016), and cis-
motif enrichment. To determine when TF-binding leads to
target gene regulation requires the integration of TF-binding
data with TF-regulation datasets. However, large-scale data-
sets that validate TF–target gene regulation data are sparse
relative to the TF–target gene binding data themselves. This
is largely due to the low-throughput nature of TF-
perturbation approaches in planta (e.g. overexpression or
mutants). Thus, there is a need for high-throughput meth-
ods to rapidly identify direct regulated TF–targets in plants.
One such method is the transient assay reporting genome-
wide effects of transcription factors (TARGET), which identi-
fies direct regulated TF–targets in isolated plant cells based
on changes in target gene expression after temporally con-
trolled TF nuclear entry, as reported for Arabidopsis
(Bargmann et al., 2013; Brooks et al., 2019). Protoplasts have
also recently been used in a high-throughput assay to iden-
tify ChIP-seq data for 103 TFs performed in isolated maize
(Zea mays) cells (Tu et al., 2020).

Such large-scale datasets for TF–target gene binding or
regulation can be used to verify predictions of TF–target
gene connections in GRNs (Marbach et al., 2012; Banf and
Rhee, 2017; Mochida et al., 2018; Kulkarni and Vandepoele,
2019). Validated TF–target interactions can also be used as
priors (e.g. “ground truths”) to train machine learning in
network inference methods (Greenfield et al., 2013; Petralia
et al., 2015; Cirrone et al., 2020), and/or as a gold standard
with which to benchmark/refine the accuracy of predicted
TF–target interactions in learned GRNs (e.g. using precision/
recall analysis; Marbach et al., 2012; Varala et al., 2018;
Brooks et al., 2019). We have also previously shown that the
integration of TF–target binding with TF–target regulation
datasets can be used to discover distinct modes-of-action of
a TF on induced vs. repressed gene targets (Brooks et al.,
2019).

Platforms that facilitate access to and integration of such
large-scale datasets that validate TF–target gene interactions
are crucial to accelerate studies of validated and inferred
GRNs. To this end, there are efforts to aggregate TF–target
datasets, largely comprising TF-binding and cis-motif

elements, for many species, including human (Han et al.,
2018), yeast (Monteiro et al., 2019), E. coli (Santos-Zavaleta
et al., 2019), and Arabidopsis (Yilmaz et al., 2010; Kulkarni
et al., 2018; Tian et al., 2019). There are also web portals
that provide access to specific experimental datasets that
support TF–target binding, for example, the Plant Cistrome
database for large-scale assays of in vitro TF–target binding
(DAP-seq; O’Malley et al., 2016). Primarily, these platforms
allow users to query a TF and obtain a list of TF-bound tar-
get genes or vice versa.

Despite these advances, few, if any, current platforms en-
able a combined analysis of TF-bound genes, TF-regulated
genes, and co-expression data, or the ability to combine
such datasets to refine/validate predicted GRNs. An impor-
tant feature that is missing from most available web tools is
the ability to integrate genome-wide targets of a single TF
validated by different experimental approaches (e.g. ChIP-
seq, DAP-Seq, and RNA-seq), captured under the same or
different experimental conditions. A second feature that is
currently lacking is the ability to compare the validated tar-
gets of multiple TFs and determine their hierarchy in a
GRN, as they relate to a set of user-defined genes such as a
pathway of interest. Finally, tools are also needed to facili-
tate the refinement/pruning of predicted GRNs by using the
validated TF–target interactions from genomic studies to
perform precision/recall analysis.

To meet the need in the systems biology community to
build, validate, and refine GRNs, we developed ConnecTF, a
platform that offers a query interface to access a TF-centric
database consisting of large-scale validated TF–target gene
interactions based on TF–target binding (e.g. ChIP/DAP-Seq)
and other gene-to-gene directed (e.g. TF–target regulation)
or undirected (e.g. TF–TF protein–protein interaction) rela-
tionships. We are hosting a publicly available instance of
ConnecTF (https://ConnecTF.org), which includes a database
of large-scale validated TF–target interactions containing TF-
binding (in vivo and in vitro), TF-regulation (in planta and
in plant cells), and cis-motif datasets for the model plant
Arabidopsis and the crops, maize and rice (Oryza sativa).
The ConnecTF database currently contains 3,738,278 experi-
mentally validated TF–target interactions for 423 TFs in
Arabidopsis (Table 1), 839,210 experimentally validated TF–
target interactions for 139 TFs in maize (Supplemental Table
S1), and 293,094 TF–target interactions for 26 TFs in rice
(Supplemental Table S1). The ConnecTF database also
includes the largest TF–target regulation dataset in plants,
specifically, the direct regulated targets for 58 TFs in
Arabidopsis (Varala et al., 2018; Brooks et al., 2019; Alvarez
et al., 2020; this study).

We demonstrate in three case studies how the features of
ConnecTF (Figure 1) and its ability to integrate a large and
diverse variety of validated TF–target gene datasets can pro-
vide biological insights into GRNs. In the first case study, we
demonstrate how the integration of validated TF-binding
and TF-regulation datasets enabled us to discover how TFs
and their TF–TF partner interactions influence the
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regulation of genes in the abscisic acid (ABA) pathway. In
case study 2, we demonstrate how ConnecTF can be used
to facilitate precision/recall analysis of inferred nitrogen reg-
ulatory networks using gold-standard validated TF–target

interactions stored in the ConnecTF database. In case study
3, we demonstrate how the query system of ConnecTF can
be used to integrate validated TF–target datasets from mul-
tiple TFs into a unified network path. Specifically, using the

Table 1 Overview of the validated Arabidopsis TF–target datasets in the ConnecTF database. For overviews of maize and rice TF datasets in
ConnecTF, see Supplemental Table S1

Interaction type Experiment type No. of TFs No. of edges Reference

TF-binding ChIP-seq 26 257,400 (Song et al., 2016; Birkenbihl et al., 2017)
DAP-seq 382 3,335,595 (O’Malley et al., 2016)

TF-regulation in planta perturbation 3 7,894 (Marchive et al., 2013; Varala et al., 2018)
TARGET

(plant cells)
58 137,389 (Brooks et al., 2019; Alvarez et al., 2020; this

study)

TF–TF protein–protein
interactions

HaloTag-NAPPA
CrY2H

1,221 6,555 (Yazaki et al., 2016; Trigg et al., 2017)

cis-binding motifs TF cis-binding motifs 1,310 cis-motifs for 730 TFs collected from Cis-BP (Weirauch et al., 2014)
cis-Motif clusters 80 clusters from 1,282 individual cis-binding motifs (Brooks et al., 2019)

Figure 1 Representations of the analysis and visualization tools in ConnecTF for the integration of data supporting TF–target gene interactions to
build/validate gene regulatory networks. ConnecTF contains TF–target interactions for 707 experiments from Arabidopsis, 158 experiments in
maize, and 63 experiments in rice, for a total of 4.87 million TF–target interactions for 616 TFs (Table 1 and Supplemental Table S1). The distinct
types of validated TF–target data within each species can be filtered and integrated using analysis/visualization tools within ConnecTF to: A, build
and visualize validated gene regulatory networks; B, use validated TF–target data to perform precision/recall analysis and prune predicted net-
works (user uploaded or predefined in database); C, compare whether the TF–targets in common between two experiments/TFs are overrepre-
sented or underrepresented; D, determine how TF–targets are distributed between TF experiments; and E, identify enriched cis-binding motifs in
validated TF targets.
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query functions in ConnecTF, we were able to chart a net-
work path from the direct targets of NIN-LIKE PROTEIN 7
(NLP7), a key TF in the nitrogen response (Marchive et al.,
2013; Alvarez et al., 2020), to its indirect targets in planta,
using an adaptation of an approach developed in Brooks
et al. (2019) called Network Walking. Overall, the database
and analysis/integration tools of ConnecTF can be used to
advance the validation of GRNs involved in any pathway us-
ing systems biology approaches in model or crop species.

Results

ConnecTF: A query interface and database to
integrate TF–target gene interactions of different
data types
The ConnecTF platform enables researchers to readily ac-
cess, integrate, and analyze a database of experimentally vali-
dated TF–target gene interaction datasets via a web
interface. The types of TF–target interactions housed in the
ConnecTF database can include TF-binding, TF-regulation,
TF–TF protein interactions, and cis-motifs. In addition to
accessing the data that we are currently hosting, users can
create an independent instance of ConnecTF that contains
any dataset of their choice. An important feature of
ConnecTF is that, in addition to providing researchers access
to the large-scale validated TF–target datasets housed in the
database, it also offers a user-friendly interface to perform
analyses to combine these various datasets for one or many
TFs. This includes the ability for users to provide their own
target gene list(s) or predicted network and identify the TFs
that regulate their pathway/network of interest. Users can
also provide their own inferred networks and use the vali-
dated TF–target data in the ConnecTF database as a gold
standard to perform precision/recall analysis using auto-
mated functions. These applications are described in the
three case studies below.

The backend structure and tools available in ConnecTF
are species-independent and built using common software
(Supplemental Figure S1). The source code and detailed
instructions on how to setup a personalized version of
ConnecTF are available on GitHub (https://github.com/coruz
zilab/connectf_server). This will enable researchers to set up
their own instance of ConnecTF for private use or public
sharing of any TF-centric genomic data. We are hosting pub-
lic versions of ConnecTF populated with TF–target valida-
tion datasets from Arabidopsis (https://ConnecTF.org/),
maize (https://Maize.ConnecTF.org/), or rice (https://Rice.
ConnecTF.org/). The current version of the Arabidopsis
ConnecTF database primarily houses TF-binding or TF-
regulation datasets that have been performed at scale
(Table 1), enabling direct comparisons of TF–target gene
interactions. The Arabidopsis datasets currently in
ConnecTF include: 388 TFs for which TF–target binding was
identified in vitro by DAP-seq (O’Malley et al., 2016), 21 TF–
target binding datasets identified in planta by ChIP-seq
(Song et al., 2016), and 58 TFs for which direct regulated
TF–target genes were identified in isolated plant cells

(Varala et al., 2018; Brooks et al., 2019; Alvarez et al., 2020),
including 14 TFs from our current study (Supplemental
Table S2). For maize, the ConnecTF datasets include the re-
cently reported ChIP-seq data for 103 TFs performed in iso-
lated maize cells (Tu et al., 2020), TF perturbation and ChIP
binding datasets collected from the literature (Bolduc et al.,
2012; Morohashi et al., 2012; Eveland et al., 2014; Li et al.,
2015), as well as in vitro TF–target binding identified by
DAP-seq for 32 maize TFs (Ricci et al., 2019; Supplemental
Table S1). As there are no large-scale datasets for rice, in
planta TF-perturbation and ChIP binding data was collected
as reported from the literature, or raw reads were reanalyzed
when necessary (see “Materials and Methods”; Supplemental
Table S1). Finally, for both Arabidopsis and maize, we have
also included in the ConnecTF database ATAC-seq (Lu
et al., 2019) and DNA hypersensitivity (DHS; Sullivan et al.,
2014) datasets, which enable users to filter TF–target inter-
actions (e.g. TF–target gene binding) for those occurring in
open chromatin regions of the different tissues from those
studies.

A key feature of ConnecTF is its logic-based query system.
A query in ConnecTF is built by constructing a series of con-
straints to restrict the set of TFs, the set of target genes, the
type of interaction (e.g. TF–target edge type), or other
attributes associated with the data. The result of a query is
the network (or subnetwork) of interactions for the selected
set of TFs and their targets. This query system allows users
to select a single TF or multiple TFs of interest, filter the
TF–targets based on different criteria (e.g. regulation by a
signal of interest, e.g. ABA), and integrate validated TF–tar-
get data across multiple TFs. This includes the ability to
search for targets of all TFs in the database, or a selected
subset of TFs of interest. The query system also allows users
to perform analyses based on the experimental type of vali-
dated TF–target interaction (e.g. TF-binding) or any other
criteria in the metadata (e.g. TF–target assays performed in
leaf vs. root). Queries can be built using the graphical Query
Builder interface or by typing queries into the search text
box. This makes the query system easy to use both for
researchers new to the ConnecTF site, and for those who
wish to build complex queries to parse multiple types of ex-
perimentally verified TF–target gene datasets for the TFs
available in the database.

ConnecTF also includes several analysis and visualization
tools for data integration (Figure 1), whose utility we dem-
onstrate in three case studies. Once a query has been sub-
mitted and is processed, the Summary tab is loaded and
gives an overview of the total number of validated TF–tar-
get genes for each experiment that was queried, grouped by
individual TFs. The validated TF–target interactions are then
made available in the Table tab, which provides an interac-
tive table that can be downloaded for offline use in either
Excel or CSV formats. The five remaining tabs in ConnecTF
allow users to analyze the queried data in various ways
(Figure 1): (1) Network tab; provides access to a TF–target
gene network that can be visualized using Cytoscape.js
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(Franz et al., 2015; Figure 1A) or downloaded as a JSON or
SIF file, (2) Target List Enrichment tab; displays the overlap
between a user-submitted gene list(s) and the validated TF–
targets bound and/or regulated by the queried TF(s) and
calculates statistical enrichment, (3) Motif Enrichment tab;
performs statistical tests for cis-motif enrichment in the vali-
dated targets of queried TFs (Figure 1E), (4) Gene Set
Enrichment tab; calculates the significance of overlap (either
greater or less than expected) between the validated targets
of each TF analysis, when compared pairwise (Figure 1C),
and (5) Sungear tab; compares the significance of overlaps
between TF–targets from multiple gene lists, comparable to
a Venn diagram, but better suited to analyze more than
three lists (Figure 1D; Poultney et al., 2006). The Network
tab also enables users to upload a predicted network and
use validated TF–target datasets housed in the ConnecTF
database to perform an automated precision/recall analysis.
This function generates an area under precision recall
(AUPR) curve with an interactive sliding-window feature
that can be used to select a precision cutoff with which to
prune/refine the predicted network (Figure 1B; Marchive
et al., 2013; Banf and Rhee, 2017; Varala et al., 2018; Brooks
et al., 2019). The three case studies below provide examples
for the use of ConnecTF to investigate TF-function in GRNs
by combining each of these features.

Getting started: Basic queries in ConnecTF
The most basic query in ConnecTF is to enter a TF name/
symbol or Gene ID, which will return all of the experiments
in the database that validate the TF–target gene interactions
for that specific TF. To demonstrate, we submitted a query
for NLP7 (AT4G24020), a master regulator in the nitrogen
signaling pathway (Marchive et al., 2013; Alvarez et al.,
2020), and the results returned from the ConnecTF database
included seven experiments for NLP7: four ChIP-seq experi-
ments performed in isolated root cells (Alvarez et al., 2020),
one in vitro TF–target binding experiment using DAP-seq
(O’Malley et al., 2016), one TF overexpression experiment
that identifies direct regulated targets of NLP7 in isolated
root cells (Alvarez et al., 2020), and one experiment identify-
ing NLP7-regulated targets based on the analysis of an nlp7
mutant in planta (Marchive et al., 2013). These results can
be viewed in the Table tab on the ConnecTF site or down-
loaded as an Excel file (Supplemental Table S3), and list the
validated NLP7 target genes from any one of these experi-
ments. This list includes descriptions of the validated NLP7
target genes (where available) and other details such as edge
count (e.g. number of experiments where an interaction be-
tween the TF and this target are validated), P-value and log2
fold change, if available.

Determining the validated TF–target genes within a path-
way or network of interest for one TF, or a set of TFs, is an-
other common task that can be readily performed using
ConnecTF. When a query is submitted in ConnecTF, the
user can limit the target gene set to one or more lists of
genes using the Target Gene List box located below the
Query Builder. We demonstrate this feature using the same

NLP7 query as above, but in this example, from the Target
Gene List box, we select the predefined list of time-
dependent nitrogen-response genes obtained from shoot or
root (Varala et al., 2018) named “Nitrogen_by_Time”. By
selecting this N-by-Time gene list, the validated targets of
NLP7 retrieved from the ConnecTF database are now re-
stricted to the genes that are in one of these two pre-
defined sets of genes responsive to N as a function of time
(in roots or shoots). In the results Table tab for this query,
there are two additional columns that indicate each gene
list (e.g. N-by-Time responsive in roots or shoots), to which
the validated NLP7 targets belong (Supplemental Table S3).
Uploading a Target Gene List also allows the user to deter-
mine the enrichment of gene targets of the TF in that path-
way viewed in the Target List Enrichment tab.

Case study 1: Uncovering mechanisms of TF mode-
of-action and TF–TF interactions by integrating
TF–target binding, TF–target regulation, and
cis-element datasets
In case study 1, we demonstrate how to use the query func-
tions and data housed in ConnecTF to integrate TF–target
gene regulation and TF–target binding data to elucidate the
TF mode-of-action, including its potential TF partners. In our
previous study of 33 TFs, we showed that by integrating TF-
binding and TF-regulation data, we could discover that a sin-
gle TF can either induce or repress target genes (Brooks et al.,
2019). Specifically, we showed examples where direct TF–tar-
get binding (e.g. via cis-motif enrichment and DAP-seq bind-
ing) was associated with TF-mediated target gene induction,
whereas indirect binding of the same TF via TF partner(s)
(e.g. only captured by ChIP) could account for TF-mediated
repression of a target gene, or vice versa (Brooks et al., 2019).
However, we were unable to generalize such TF mode-of-
action discoveries, as only 3/33 TFs in that prior study had
both in vitro and in vivo TF–target binding data to compare
to the TF–target regulation data. To expand our discoveries
of whether these distinct TF modes-of-action could be gener-
alized, we used ConnecTF to integrate new TF-regulation
data we generated in this study (Supplemental Table S2)
with existing TF-binding data (Song et al., 2016) for 14 TFs in
the ABA signaling pathway. We did this by using functions in
ConnecTF to integrate: (i) the direct regulated TF targets of
these 14 TFs identified in root cells (Supplemental Table S2)
using the TARGET system (Bargmann et al., 2013; Brooks
et al., 2019), (ii) in planta TF-binding (e.g. ChIP-seq; Song
et al., 2016), (iii) at least one cis-binding motif available on
Cis-BP (Weirauch et al., 2014), and (iv) validated in vitro TF-
binding data obtained by DAP-seq (O’Malley et al., 2016) for
5/14 of the ABA-responsive TFs.

Validated targets of 14 TFs are specifically enriched in ABA-

responsive genes

First, we demonstrate how the validated TF–target gene
datasets for these 14 ABA-responsive TFs housed in the
ConnecTF database can be integrated to understand how
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they regulate ABA signaling. To do this, we first used the
Target List Enrichment tool in ConnecTF to determine for
each of the 14 TFs whether the validated TF-regulated target
genes identified by controlled TF-nuclear import in root cells
using the TARGET assay (Bargmann et al., 2013; Brooks
et al., 2019) were significantly enriched in a list of ABA-
responsive genes identified in planta from Song et al. (2016).
This integrated analysis showed that the direct regulated tar-
gets of these 14 TFs in isolated plant cells are each signifi-
cantly enriched for ABA-responsive genes in planta (Fisher’s
exact test, P5 0.05; Figure 2). This analysis enabled us to
address whether each of the 14 TFs are involved in regulat-
ing genes that are induced or repressed in response to ABA
treatment (Figure 2). Moreover, this analysis revealed that
two known regulators of ABA signaling, ABF1 and ABF3
(Choi et al., 2000), are at the top of the list of TFs (ranked
by P-value) for having targets that are highly enriched for
the ABA-induced genes (Figure 2). Next, we further sepa-
rated the TF-regulated targets of each of the 14 TFs into TF-
induced or -repressed target sets using the Query function
of ConnecTF. This is possible because TF–target gene inter-
action datasets in ConnecTF that are based on expression
optionally include P-value and log2 fold-change information
for each interaction. This information allows users to sepa-
rate TF-induced and -repressed targets from the same

experiment by building a query that specifies log2 fold-
change (e.g. AT2G46680[log2fc4 0] for induced TF–target
genes). This analysis enabled us to determine the TF–target
specificity (e.g. percentage of TF-regulated targets that are
ABA responsive), TF–target influence (e.g. percentage of
ABA-responsive genes regulated by each TF), and P-value of
the overlap of TF–target genes with induced and repressed
ABA-responsive genes (Supplemental Table S4). This analysis
revealed that for the majority of the 14 TFs, the TF-induced
targets overlap significantly with genes induced by the ABA
signal, whereas TF-repressed targets overlap significantly
with the genes repressed by ABA treatment.

Distinct cis-motifs are enriched in TF-induced and/or

TF-repressed targets of 14 TFs in ABA signaling

We next sought to use the TF–target gene binding and TF–
target gene regulation data for these 14 TFs to determine
whether the TFs act alone, or in combination, to regulate
the target genes in the ABA response pathway. To this end,
we first asked whether the validated cis-binding motif for
each TF (collected from Cis-BP; Weirauch et al., 2014)
showed specific enrichment exclusively in either the TF-
induced or the TF-repressed target gene lists, as we found in
a previous study of 33 TFs in the nitrogen-response pathway
(Brooks et al., 2019). To do this, we first made a query in

Screenshot from https://ConnecTF.org

Figure 2 Case study 1: Ranking significance of 14 TFs in regulation of ABA-responsive genes. Screenshot from the ConnecTF website demonstrates
how the Target List Enrichment tool can be used to address whether the direct regulated targets of 14 ABA-responsive TFs identified in isolated
root cells using the TARGET assay (Supplemental Table S2) are enriched for ABA-responsive genes identified in planta by Song et al. (2016). The
validated regulated targets of each of the 14 TFs are enriched for ABA-responsive genes, including either ABA-induced genes or ABA-repressed
genes (P 5 0.05, Fisher’s exact test). Known ABA regulators ABF1 and ABF3 (Choi et al., 2000) are among the most enriched in ABA-responsive
genes. Query: all_expression, Target Genes: Abscisic_Acid_Responsive, Filter TFs: ABA TFs, Background: TARGET_Expressed.
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ConnecTF that returns the TF-induced or TF-repressed tar-
gets for each TF as separate gene lists. Next, we selected the
Individual Motifs tab from within the Motif Enrichment
results page. The default setting returns the cis-element en-
richment in the 500-bp promoter region of the validated
target genes of a TF for any cis-motif for that TF. Users can
also define/select other genic regions of target genes (2,000-
bp promoter, 1,000-bp promoter, 5’ untranslated region
(UTR), coding sequence (CDS), introns, 3’ UTR, and exons),
or choose a cis-motif for another TF, e.g. a putative partner,
and ConnecTF will calculate enrichment for the selected
motif(s) in the selected genic region(s).

For the 14 TFs in the ABA pathway, we examined their
TF-induced vs. TF-repressed gene target lists for enrichment
of their own cis-motif and show examples for the TFs HB7,
MYB3, and ZAT6, (Figure 3). We found that the majority of
the 14 TFs tested have enrichment of their known cis-
element in either their induced or repressed targets that we
identified as directly regulated TF–targets in root cells using
the TARGET assay (Supplemental Table S5). Of these, 7/14
TFs (including HB7, Figure 3A) show enrichment of at least
one known cis-motif for that TF exclusively in the TF-
induced targets, whereas 2/14 (MYBR1 and MYB3,
Figure 3B) show specific enrichment of cis-motif for that TF
exclusively in the TF-repressed targets (Supplemental Table
S5). For 5/14 TFs (including ZAT6, Figure 3C), there was no
enrichment of their known cis-binding motif in either the
TF-induced or -repressed targets.

Whereas cis-motif enrichment indicates where a TF is likely
to directly bind in the genome, validated direct binding to
specific genomic loci is available from in vitro TF–target gene
binding (e.g. DAP-seq experiments) housed in the ConnecTF
database (O’Malley et al., 2016). For the 5/14 ABA-responsive
TFs for which DAP-seq data is available (FBH3, GBF3, HB6,
HB7, and MYBR1), our comparison of TF-induced or -re-
pressed targets with in vitro TF-bound targets supported the
cis-motif enrichment results. That is, for FBH3, HB7, and
HB6, only the TF-induced target gene lists were enriched for
genes that were bound in vitro to that TF, whereas for
MYBR1, only TF-repressed targets were enriched in genes
that were bound in vitro to that TF (Supplemental Table
S6). GBF3, which had no cis-motif enrichment in either the
TF-induced or -repressed directly regulated targets, also had
no enrichment of TF-binding in vitro in either set of
TF-regulated targets (Supplemental Table S6).

TF-regulated genes are largely TF bound, whereas the

majority of TF-bound genes are infrequently TF-regulated

An outstanding question related to TF–target validation
datasets is when and whether TF-binding leads to gene reg-
ulation. To conduct this analysis, we asked whether genes
that are bound by each of the 14 ABA-responsive TFs in
planta, based on ChIP-seq experiments (Song et al., 2016),
significantly overlap with TF-regulated genes (e.g. either TF-
induced or -repressed) identified in root cells using the
TARGET assay (Supplemental Table S2). To do this, we used

 Modified screenshot from https://ConnecTF.org

A

B

C

Figure 3 Case study 1: Known cis-binding motifs for a TF are enriched
in specific subsets of TF-regulated genes (induced or repressed). A
screenshot demonstrating how ConnecTF can be used to determine
the enrichment of cis-motifs within the subset of targets of a TF (e.g.
TF-induced or TF-repressed targets). The ConnecTF database houses
1,310 experimentally determined cis-binding motifs for 730
Arabidopsis TFs, 17 cis-binding motifs for 12 maize TFs, and 26 cis-
binding motifs for 23 rice TFs (Table 1 and Supplemental Table S1).
Users can use this resource to determine if any of these cis-motifs are
enriched in the targets of the queried TF(s) using the Individual Motifs
section of the Motif Enrichment tab. The results show that: A, the HB7
cis-motif is enriched only in the list of TF–target genes induced by
HB7 in a root cell-based TF-perturbation assay TARGET, but not in
the list of target genes whose expression is repressed by HB7; B,
the MYB3 cis-motif is enriched only in the list of TF–target genes
repressed by MYB3, but not the list of MYB3-induced target genes;
and C, the known motif for ZAT6 is not found to be enriched the
list of genes whose expression is either induced or repressed by
ZAT6 perturbation. P-values were calculated using the Fisher’s
exact test. Query: AT2G46680[log2fc5 0] or AT2G46680[log2fc4 0]
or AT1G22640[log2fc5 0] or AT1G22640[log2fc4 0] or
AT5G04340[log2fc5 0] or AT5G04340[log2fc4 0], Background:
TARGET_Expressed.
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the Gene Set Enrichment tool in ConnecTF, which reports
whether the pairwise overlap between any two queried ex-
perimental analyses is greater or less than that expected by
chance (Fisher’s exact test). This Gene Set Enrichment func-
tion is based on the Genesect tool in VirtualPlant (Katari
et al., 2010) and is fully described in Krouk et al. (2010). As
an example, for three TFs—HB7, MYB3, and ZAT6—the
Gene Set Enrichment results show that both the TF-induced
and -repressed target gene lists significantly overlap with the
TF-bound targets of that TF (P5 0.05, Fisher’s exact test;
Figure 4, A–C). Extending this analysis to all 14 ABA-
responsive TFs, we find that 9/14 TFs have a significant over-
lap of TF-bound genes in planta with both the list of TF-
induced and -repressed targets for that TF, as validated in
root cells using the TARGET assay (P5 0.05, Fisher’s exact
test; Supplemental Table S7). For 4/14 of the TFs—ABF1,
ABF3, DREB2A, and HSFA6A—we found a significant over-
lap of the TF-bound targets only with the TF-induced tar-
gets (P5 0.05, Fisher’s exact test). By contrast, only 1/16
TFs (GBF2) had a significant overlap of TF-bound targets
only with the list of TF-regulated targets that are repressed
(P5 0.05, Fisher’s exact test; Supplemental Table S7).

Importantly, when we used ConnecTF to evaluate the re-
lationship of TF-regulation vs. TF-binding datasets, our inte-
grated analysis showed that for 11/14 of the ABA-responsive
TFs, greater than 50%, and as much as 75%, of TF–target
genes that were TF regulated in root cells were also bound
by that TF in planta (Figure 4D, solid green squares). By con-
trast, for all 14 TFs, the number of TF-bound targets in
planta that were regulated by that TF never exceeded 25%
(Figure 4D, open purple squares).

Enabling the identification of partner TF cis-binding motifs

in focus TF-regulated genes

We next used ConnecTF to identify potential TF partners
for each TF being studied, which we refer to as the “focus
TF”, a term used in the ENCODE and maize TF-binding net-
work studies (Gerstein et al., 2012; Tu et al., 2020). This was
especially relevant when the validated focus TF-regulated tar-
gets (either induced or repressed) showed no enrichment of
the known cis-binding motif for the focus TF (Supplemental
Table S5). In these sets of focus TF-regulated genes, we used
ConnecTF to search for overrepresentation of cis-motifs for
potential partner TFs. To stream-line this analysis, rather
than searching for all 1,310 cis-motifs available for
Arabidopsis from Cis-BP (Weirauch et al., 2014), we limited
our search to the 80 cis-motif clusters generated from all
available Arabidopsis thaliana cis-motifs (Brooks et al., 2019),
which are now housed in the ConnecTF database.

First, we performed cis-motif enrichment analysis on the
validated target gene lists of three focus TFs, namely HB7,
MYB3, and ZAT6 (Figure 5). For each of these focus TFs, we
hypothesized that they could act directly on gene targets, or
through TF partners, based on our analysis of TF-regulation,
TF-binding, and cis-motif enrichment. For the focus TF HB7,
whereas both induced and repressed targets of HB7

identified in root cells overlap significantly with genes bound
by HB7 in planta (by ChIP-seq; Figure 4A), the known HB7
cis-motif is only enriched in the HB7-induced targets
(Figure 3A). Using cis-analysis functions in ConnecTF, we
found that the HB7-repressed target gene list is specifically
enriched in a cis-motif (cis-cluster 13) for WRKY TFs
(P5 0.05, Fisher’s exact test; Figure 5A). This finding sug-
gests HB7 repression of gene targets is mediated by one or
more TF partners in the WRKY TF family. For the focus TF
MYB3, whereas both induced and repressed targets of
MYB3 identified in root cells are each enriched in genes
bound by MYB3 in planta (e.g. ChIP-seq; Figure 4B), the
MYB3 cis-motif is only enriched in the list of MYB3-
repressed targets (Figure 3B). By contrast, the list of MYB3-
induced targets are enriched in cis-motifs (cis-clusters 6, 39,
68) for potential TF partners in the bZIP/bHLH/BZR and
CAMTA/FAR1 TF families (P5 0.05, Fisher’s exact test;
Figure 5B). This result suggests that MYB3 induces target
genes via an indirect interaction with partner TF(s) from the
bZIP1/bHLH/BZR or CAMTA/FAR1 families. Lastly, although
the list of induced and repressed targets of the focus TF
ZAT6 in root cells are enriched in genes bound by ZAT6 in
planta (e.g. ChIP-seq; Figure 4C), there is no enrichment of
the known ZAT6 cis-element in either set of ZAT6-regulated
genes (induced or repressed; Figure 3C). Instead, the list of
ZAT6-induced genes are specifically enriched is cis-elements
for cis-clusters 6 and 39 from the bZIP/bHLH/BZR TF families
(Figure 5C), whereas the list of ZAT6-repressed genes are
enriched in cis-cluster 13 for WRKY TFs (P5 0.05, Fisher’s
exact test; Figure 5C). These results suggest that ZAT6 regu-
lates both its induced and repressed targets via interactions
with members of these TF partner families.

When we analyzed all 14 focus TFs for potential partner
TFs, we observed that cis-motif clusters 6 and 39 are
enriched (P5 0.05, Fisher’s exact test) in the focus TF-
induced and TF-bound gene target lists of 7/14 of the ABA-
responsive TFs (Supplemental Table S8). Furthermore, we
found that cis-motif Clusters 6 and 39 are enriched in the
list of genes induced by ABA (P5 0.05, Fisher’s exact test),
but not in the list of ABA-repressed genes (Supplemental
Table S8). This result suggests that partner TFs from the
bHLH/bZIP/BZR TF family/families work with MYB3, ZAT6,
and other ABA-responsive focus TFs to regulate these ABA-
responsive targets. Likewise, cis-motif cluster 13, which rep-
resents WRKY TFs, is enriched in the list of the focus TF-
repressed and TF-bound targets of 7/14 TFs, as well as in
the list of genes that are repressed in response to ABA
(P5 0.05, Fisher’s exact test; Supplemental Table S8).

Overall, our cis-analyses using ConnecTF uncovered po-
tential partner TFs for 14/21 focus TFs previously identified
to be involved in the ABA response (Song et al., 2016).

Case study 2: Refining/pruning inferred GRNs using
validated TF–target data
In this case study, we show how ConnecTF can be used to
readily combine and evaluate the relevance of gold-standard
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TF–target gene validation data to perform automated preci-
sion/recall analysis. Such results can be used to refine/prune
TF–target connections in inferred GRNs. This feature will ad-
vance the systems biology cycle of network prediction, vali-
dation, and pruning/refinement.

Performing automated precision/recall analysis and

refinement/pruning of a nitrogen-response GRN

As an example, we show how ConnecTF can automate a
precision/recall analysis on a GRN inferred from time-series
transcriptome data of the nitrogen response in Arabidopsis
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Figure 4 Case study 1: TF-regulated gene targets are largely TF-bound, while TF-bound genes are infrequently TF-regulated. The Gene Set
Enrichment tool in ConnecTF can be used to determine if the pairwise overlap of the target gene lists of two TF analyses is significant (Fisher’s ex-
act test). This feature enables users to answer common questions such as “When does TF binding lead to TF-regulation (e.g. significance of overlap
of TF-binding and TF-regulation)? Or, how significant is the overlap of the list of gene targets of two different TFs?” We demonstrate this feature
using three examples: A, HB7, B, MYB3, and C, ZAT6. We display screenshots from the ConnecTF site of the overlap between TF-bound targets, as
determined by in planta ChIP (Song et al., 2016) and the TF-regulated targets (e.g. induced or repressed) that we determined in isolated root cells
using the TARGET assay (Supplemental Table S2). For each TF, the TF-bound targets significantly overlap with the lists of both the TF-induced
and TF-repressed gene targets identified in root cells using the TARGET assay. D, Overlap of TF-regulation and TF-binding for all 14 TFs
(Supplemental Table S6 and Supplemental Table S7). Here, we observed that the percent of TF-regulated genes that are TF bound is much greater
than the percent of TF-bound genes that are TF-regulated, regardless of whether the binding data is in vivo or in vitro. This suggests that TF-bind-
ing alone is a poor indicator of gene regulation in the absence of complementary TF-regulation data for each TF. Example Query (Panel A):
AT2G46680[log2fc5 0] or AT2G46680[log2fc4 0] or AT2G46680[EDGE_TYPE="in planta:Bound"], Background: TARGET_Expressed.
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roots (Brooks et al., 2019). As gold-standard validation data,
we selected the TF–target regulation data based on TF-
perturbation experiments performed in root cells using the
TARGET system (Bargmann et al., 2013). This set of 55 TFs
includes the 33 nitrogen-responsive TFs from Brooks et al.
(2019), 8 TFs that act downstream of the master nitrogen-
response TF, NLP7 (Alvarez et al., 2020), and TARGET data
for the 14 ABA-response TF–target regulation datasets gen-
erated in root cells in our current study (Supplemental
Table S2). To initiate this precision/recall analysis of the in-
ferred nitrogen-response GRN in ConnecTF, we first queried
the 55 TF–target gene regulation datasets performed in root
cells using the Query page. To determine which of these 55
TFs were relevant to our GRN analysis, we used the Target
Network box to select the “Root Predicted Nitrogen
Network” from Brooks et al. (2019). This query returned a
total of 32/55 queried TFs and 1,349 validated TF–target
gene interactions in the predicted nitrogen-response GRN.
This query automatically generates a precision/recall curve,

which is seen in the AUPR section at the bottom half of the
Network tab (Figure 6). The slider or textbox above the pre-
cision–recall plot can be used to select a precision cut-off
score, which will update the interactive graph and table
with details of a pruned/refined network (e.g. the predicted
TF–target interactions whose edge score equals or exceeds
the selected precision score threshold). In this example, the
selected TF–target edge score cutoff of 0.32, reduced the
size of the predicted nitrogen-regulatory GRN from 240,410
interactions between 145 TFs and 1,658 targets, to a refined
higher-confidence GRN. This higher confidence GRN is com-
posed of 4,343 interactions between 143 TFs and 215 target
genes whose predicted interactions passed the 0.32 thresh-
old set by the precision/recall analysis of the validated TF–
target gene interactions (Figure 6).

GRNs constructed based on co-expression data can also
be validated in a similar manner. To this end, we provide a
precision/recall example for a GRN built from the co-
expression network available in the Atted-II database
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Figure 5 Case study 1: cis-motifs for putative TF partners are identified in indirectly bound focus TF–targets. ConnecTF was used to combine the
new TF-regulation data generated in root cells using TARGET assay (Supplemental Table S2), for 14 ABA-responsive TFs with existing TF-binding
data in planta (Song et al., 2016). The combination of these datasets reveals the mode-of-action for how these focus TFs function to regulate tar-
get genes in the ABA signaling pathway. Here, we summarize these results for 3/14 focus TFs: A, HB7, B, MYB3, and C, ZAT6. For both of the focus
TFs, HB7 and ZAT6, we found that the TF-repressed and TF-bound targets, which lack enrichment of the known cis-motif for these focus TF (see
Figure 3), had enrichment of the cis-motif cluster (Brooks et al., 2019) representing potential partners in the WRKY TF family. Similarly, for the fo-
cus TFs MYB3 and ZAT6, the TF-induced and TF-bound targets that were not enriched in the cis-motif for these focus TFs, were each enriched
for cis-motif clusters 6 and 39 (Brooks et al., 2019), which represents potential partner TFs in bZIP/bHLH/BZR families of TFs. This cis-analysis
allowed us to derive a model for each focus TF (e.g. HB7, MYB3, and ZAT6), which describes how physical interactions with putative partner TFs
enable the focus TF to regulate subsets of its target genes, even in the absence of direct binding. Example Query (Panel A):
(AT2G46680[log2fc4 0] and AT2G46680[EDGE_TYPE="in planta:Bound"]) or (AT2G46680[log2fc5 0] and AT2G46680[EDGE_TYPE="in
planta:Bound"]), Background: TARGET_Expressed.
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(Obayashi et al., 2018). We pruned this co-expression GRN
using all TF-regulation data in the ConnecTF database
(Supplemental Figure S2).

Using the appropriate buttons at the top of the Network
page, the user can download the pruned/refined network as
a network file (in JSON or SIF formats) or visualize the net-
work in the browser (Open Network). The precision cutoff
can be further modified while viewing the network in the
browser using the slider or text box in the Additional Edges
menu. TF–target edges within the network can be hidden

to highlight a specific interaction type of interest (e.g. time-
based TF–target edge predictions) or additional edges can
be added from a file the user uploads. The resulting pruned
network can be saved as a JSON file or an image exported.

TF-regulation data outperforms in vitro TF-binding data as

a gold standard for precision/recall analysis

Next, we demonstrate how ConnecTF can be used to evalu-
ate which TF–target validation datasets are most effective
for use as gold standards for GRN refinement. As an exam-
ple, the automated functions in ConnecTF enabled us to
rapidly evaluate and compare the relative AUPR perfor-
mance of different TF–target validated datasets (TF-binding
vs. TF-regulation) in precision/recall analysis of a GRN in-
ferred from time-series nitrogen response in Arabidopsis
roots (Brooks et al., 2019). The TF–target validated datasets
we tested are: (1) TF-regulated gene sets; TF–target genes
regulated in root cells using the TARGET assay (Brooks
et al., 2019; Alvarez et al., 2020), (2) TF-bound gene sets;
TF–target sets bound in vitro (DAP-seq; O’Malley et al.,
2016), or (3) Intersection of TF-regulated and TF-bound
gene sets; TF–target sets regulated in root cells (TARGET as-
say) and bound in vitro (DAP-seq; Table 2). For the gene
sets that involved TF–target binding (i.e. 2 and 3 above), we
also used the DHS data (Sullivan et al., 2014) housed in the
ConnecTF database to filter for DAP-seq peaks that occur in
open chromatin regions in root tissue.

By comparing the precision/recall results on networks re-
fined using these three validated TF–target gene datasets,
we found that using TF-regulated target data identified in
root cells using TARGET as the “gold standard” resulted in a
higher AUPR, and greater improvement in AUPR relative to
the randomized predicted network, compared to using
in vitro TF-binding target data alone (DAP-seq; Table 2). In
addition, we found that whereas combining TF–target regu-
lated and TF–target bound datasets reduced the AUPR, it
also resulted in a greater improvement in the AUPR relative
to the randomized network, compared to using TF-
regulation datasets only. Finally, we found that applying the
DHS filter to DAP-seq peaks reduced the AUPR, and only
had a small effect on the improvement of the AUPR relative
to the randomized network, compared to the same set of
edges without the DHS filter (Table 2). Thus, the ability to
test and combine TF–target datasets in an automated
AUPR analysis enabled us to rapidly determine which of the
tested datasets were the most effective for use in precision/
recall analysis and network refinement.

Case study 3: Charting a network path by
combining validated TF–target data for multiple
TFs
An important feature that distinguishes ConnecTF from
most other available TF analysis tools/platforms is its Query
building function. The Query builder allows users to readily
select, parse, and combine TF–target gene validation data
from different TF experiments and research groups stored in

Screenshot from https://ConnecTF.org

Figure 6 Case study 2: An automated precision/recall analysis per-
formed on an inferred network uploaded to ConnecTF. Users are able
to use functions in ConnecTF to perform an automated precision/re-
call analysis on a predicted/inferred GRN. To do this, the user first
uploads a ranked list of TF–target interactions in a predicted network
into ConnecTF from the Query page using the Target Network box.
Next, users can validate/refine their predicted network using validated
TF–target gene data housed in the ConnecTF database. Once they do
this, within the Network tab, a precision/recall analysis (AUPR) section
will be automatically generated for the predicted network, using se-
lected TF–target validation datasets in the ConnecTF database, and
displays a precision/recall plot and summary table. The user can then
select a precision cutoff using the sliding bar above the plot, which
will interactively update the AUPR graph, summary table, and the net-
work that is visualized or exported. Query filters enable the user to se-
lect which TFs and the specific types of edges that should be used as
the “gold standard” to perform precision/recall analysis of the pre-
dicted network. Here, we show a screenshot for an example where we
used the time-based inferred network from Arabidopsis roots (Brooks
et al., 2019), and all validated edges from TFs whose TF-regulated tar-
gets were identified in root cells using the TARGET assay (39 experi-
ments) to demonstrate this AUPR feature of ConnecTF. Query:
all_expression[TISSUE/SAMPLE="Root Protoplasts"], Target Network:
Root_Nitrogen_Predicted_Network, Background: TARGET_Expressed.
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the ConnecTF database. For example, we demonstrate in
the steps outlined below how ConnecTF can be used to
chart a network path from the direct targets of a TF1 to its
indirect targets via secondary TFs (TF2s). We initially con-
ceived of this Network Walking approach which we manu-
ally executed in Brooks et al. (2019). As a working example,
we show how ConnecTF can be used to chart a network
path from a TF1 (e.g. NLP7, a master TF in the nitrogen sig-
naling pathway) to its direct TF1–targets to its indirect tar-
gets. We did this by combining TF–target regulation and
TF–target binding datasets from two different NLP7 studies:
one performed by NLP7 perturbation in root cells and one
performed in planta (Marchive et al., 2013; Alvarez et al.,
2020).

Step 1. Identify direct vs. indirect targets of TF1

The first step in charting a network path is to identify the
direct vs. indirect targets of TF1. To this end, we used the
Query function in ConnecTF to identify direct NLP7 (TF1)
targets as genes that are both NLP7-regulated and -bound
(Marchive et al., 2013; Alvarez et al., 2020). Next, we identi-
fied indirect NLP7 targets as genes that are NLP7-regulated,
but not bound by NLP7 in ChIP experiments (Marchive
et al., 2013; Alvarez et al., 2020). We executed two simple
queries in ConnecTF to produce these lists of direct targets
of NLP7 (Figure 7A, Query 1) and indirect targets of NLP7
(Figure 7A, Query 2). The list of genes resulting from these
queries can be saved within ConnecTF, to be used as direct
vs. indirect target gene lists of the TF1 (NLP7) for further
analyses in the following steps, or downloaded by the user.

Step 2. Connect TF1 to its indirect targets via its direct

intermediate TF2s

With the lists of direct vs. indirect targets of a TF1 (NLP7) in
ConnecTF, we can now perform the second step of charting
a network path in the Network Walking approach. In Step
2, we used ConnecTF to connect NLP7 to its indirect targets
via TF2s that are themselves direct targets of NLP7. To do
this, we queried the ConnecTF database for all the TF–tar-
get regulation datasets performed in root cells using
TARGET (55 TFs). We further restricted the results returned
to the indirect targets of TF1 (e.g. NLP7 regulated, but not
bound) using the Target Genes filter on the query page. For
this query, we also restricted the TF2s to the direct targets
of NLP7, as identified in Step 1, using the Filter TFs option

(Figure 7A, Query 3). The resulting Table tab shows the
complete set of validated TF–target edges from eight TF2s

that are direct targets of NLP7 (e.g. TF2s: ASR3, NF-YA3,
DREB2A, ZAT6, ERF060, HB6, LBD37, and LBD38) to NLP7
indirect targets. From the Target Enrichment tab, we see
that all eight TF2s are enriched for NLP7 indirect targets
(P5 0.05, Fisher’s exact test), with NF-YA3, LBD37, and
LBD38 being the most important based on TF-influence, tar-
get specificity, and P-value of the overlap (Supplemental
Figure S3).

Step 3. Visualizing the network path from TF1 fi direct

TF2(s) fi indirect targets of TF1

Finally, we can visualize the resulting network path from TF1

(NLP7) ! eight direct TF2 targets ! indirect TF1 targets.
We can do this in ConnecTF by going to the Network tab
and clicking Open Network, which will launch Cytoscape.js
(Franz et al., 2015). Basic Cytoscape functionality is available
within ConnecTF for viewing and adding additional edges to
the network (Figure 7B), or the network can be downloaded
as a JSON file and further modified by the user.

Discussion
Herein, we describe the development and deployment of
ConnecTF (https://ConnecTF.org), a software platform
designed to facilitate the integration of validated TF–target
gene interaction datasets and harness them to create, refine,
and prune GRNs; a current bottleneck in the systems biol-
ogy cycle.

In case study 1, we used the functions in ConnecTF to
perform an integrated analysis of TF-regulation data gener-
ated in our study (Supplemental Table S2) and TF-binding
datasets for 14 of the TFs in the ABA-response pathway
(Song et al., 2016). This integrated analysis enabled us to dis-
cover distinct TF modes-of-action for each focus TF and
identify its putative partner TFs (Figure 5).

The simplest model for TF–target gene regulation is
through direct interaction of a TF via DNA-binding to cis-
regulatory regions in its target genes, and our results sup-
port that most TFs are able to regulate target gene expres-
sion in this way. We also uncovered evidence for indirect
action of a focus TF on its targets via focus TF-partner TF
cooperativity, which has been shown to play an essential
role in how a TF controls target gene expression (Yá~nez-
Cuna et al., 2012; Para et al., 2014; Slattery et al., 2014;

Table 2 Case study 2: Precision/recall analysis of a GRN inferred network from time-series nitrogen-response data in Arabidopsis roots (Brooks
et al., 2019) performed using automated precision/recall functions in ConnecTF using different sets of experimentally validated edges in the
ConnecTF database

Validated edges used AUPR AUPR randomized
network

P-value Percent improvement
vs. random (%)

TF-regulated only (TARGET) 0.2025 0.1595 50.001 27
TF-bound only (in vitro; DAP-seq) 0.3257 0.2967 50.001 10
TF-regulated and TF-bound (in vitro; TARGET \ DAP-seq) 0.0863 0.0614 50.001 41
TF-bound only (in vitro; DAP-seq)/ DHS filtered (root) 0.1908 0.1682 50.001 13
TF-regulated and TF-bound (in vitro)/ DHS filtered (root; TARGET \ DAP-seq) 0.0555 0.0398 50.001 39
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Alvarez et al., 2020; de Boer et al., 2020). Previous studies
have identified putative TF partners by looking at co-
occurrence of binding using ChIP peaks, as in the ENCODE
and maize studies (Gerstein et al., 2012; Tu et al., 2020), and
we use their focus TF and partner TF terminology in our
analyses. By integrating TF-regulation and TF-binding data,
we also found evidence that direct binding of a TF to a tar-
get could lead to gene activation, whereas indirect binding
could lead to gene repression (or vice versa; Figure 5).
Moreover, we showed how ConnecTF can be used to iden-
tify potential partner TFs involved in the indirect target
binding of the focus TF. This was done by determining the
enrichment of cis-binding motif clusters for partner TF fami-
lies (Brooks et al., 2019) in the direct regulated targets of
the focus TFs (Figure 5). In these cases, the results suggest
that regulation could occur by indirect focus TF binding to
a target gene via its association with partner TFs, sometimes
referred to as “tethering” (Stender et al., 2010).

We also found that 3/14 TFs tested (ABF1, ABF3, and
DREB2A) were able to repress the expression of a set of tar-
get genes with no evidence for direct or indirect binding to
the gene targets (Supplemental Tables S5 and S7). Other
regulatory mechanisms for transcriptional control have been
reported that do not involve TF binding, either direct or in-
direct, to target genes. This includes the destabilizing of
transcriptional complexes by a TF, as seen for SPL9 repres-
sion of anthocyanin biosynthesis (Gou et al., 2011), and TFs
sequestering components of a transcriptional activating
complex (Nemie-Feyissa et al., 2014). Overall, these results
demonstrate how ConnecTF can be used to generate

testable hypotheses by integrating TF-regulation and TF-
binding datasets that can be used by the user for further
investigation.

Our integration of TF-regulation and TF-binding studies
also revealed that TF-regulation is a good indicator of TF-
binding, but that TF-binding is a poor indicator of TF-
regulation (Figure 4D). Specifically, for 14 TFs analyzed, up
to 78% of the direct TF-regulated genes identified in root
cells using TARGET were TF-bound in planta (Figure 4D and
Supplemental Table S7). However, the reverse is not the
case, as we find that at most 24% of TF–targets bound in
planta were TF-regulated in root cells, for these 14 TFs
(Figure 4D and Supplemental Table S7). Whereas this could
be due to the different experimental design used in the
studies being compared, TF-binding is well-known to be a
poor indicator of TF-regulation across many eukaryotic
organisms, even when TF-regulation and TF-binding are
compared from the same tissue (Phuc Le et al., 2005; Gitter
et al., 2009; Bolduc et al., 2012; Arenhart et al., 2014), or
even from the same cell samples (Para et al., 2014).

In case study 2, we demonstrated how ConnecTF can be
used to overcome the bottleneck in systems biology, which
is the validation of predicted networks using TF–target vali-
dation data. We show how automated functions in
ConnecTF allow a user to readily select and test gold-
standard validated TF–target interactions to perform preci-
sion/recall analysis of GRNs (Figure 6). We used these auto-
mated precision/recall analysis features in ConnecTF to
discover that TF–target regulation datasets outperform
in vitro TF-binding datasets as gold-standard data in AUPR

Direct
Targets

Indirect
Targets

Regulated but not
bound in planta

Regulated and
bound in planta

1 2

NLP7

ZAT6

ASR3

HB6

LBD38

LBD37

ERF060

DREB2A

NF-YA3

A B

B is a modified screenshot from https://ConnecTF.org

Figure 7 Case study 3: Network Walking: Using ConnecTF to chart a network path from TF1! TF2s! indirect targets of TF1. The query system
of ConnecTF can be used in an iterative process, with the results of one query being used to filter the TFs and/or target genes of other queries.
This facilitates the building of more complex GRNs, such as charting a network path from TF1 to its downstream TF2s and indirect targets. A,
ConnecTF can be used to chart a network path from a TF1 via its direct TF2s to its indirect targets using the Network Walking approach described
in Brooks et al. (2019). Simple queries can be used in ConnecTF to integrate TF–target binding and TF–target regulation datasets to identify TF1

direct targets (TF1-regulated and TF1-bound, query 1) and TF1 indirect targets (TF1-regulated but not TF1-bound, query 2). The results of a query
can also be saved and used to filter subsequent user queries, as in query 3. B, We demonstrate the process of Network walking using NLP7, a mas-
ter TF1 involved in nitrogen signaling, identifying a set of eight direct intermediate TF2s targets acting downstream of NLP7 that control 68% of
the NLP7 indirect targets. Query 1: AT4G24020[EXPERIMENT_TYPE=Expression] and AT4G24020[TECHNOLOGY/METHOD=ChIPseq], Query 2:
AT4G24020[EXPERIMENT_TYPE=Expression] and not AT4G24020[TECHNOLOGY/METHOD=ChIPseq], Query 3: all_expression[TISSUE/
SAMPLE="Root Protoplasts"], Filter TFs: Targets from query 1 e.g. Bound and regulated (direct) by NLP7, Target Genes: Targets from query 2 e.g.
Regulated but unbound (indirect) by NLP7.
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tests (Table 2). These results are unsurprising given that we
observed in vitro binding (i.e. DAP-seq) is extensive in the
genome, but often represents only a subset of TF-regulated
targets, as shown in case study 1 (Figure 4D). This is likely
related to the observation that a majority of TF-binding in
the genome does not result in gene regulation
(Supplemental Table S6), and/or TF–TF interactions (i.e. in-
direct binding), which are not captured in this in vitro
DNA-binding assay.

In case study 3, we showed how the ConnecTF platform
enables users to integrate validated TF–target gene interac-
tions from multiple TF datasets into a unified network path
within a GRN, facilitating systems biology studies. To demon-
strate this, we used ConnecTF to chart a network path that
defined how NLP7, a master regulator of nitrogen signaling
(Marchive et al., 2013; Alvarez et al., 2020), controls down-
stream genes through intermediate TF2s, following the
Network Walking approach developed previously (Brooks
et al., 2019). To do this, we showed how simple queries in
ConnecTF allowed us to identify eight direct TF2 targets of
NLP7 that are able to directly regulate 68% of NLP7 indirect
targets (Figure 7). This network path shows that LBD37 and
LBD39, which are known to be important in nitrogen uptake
and assimilation in planta (Rubin et al., 2009), are the TF2s
that are the most influential on NLP7 indirect targets
(Supplemental Figure S3). Thus, ConnecTF offers a user-
friendly way to identify the sequential action of TFs in a net-
work path that regulate a pathway or set of genes of interest.

Conclusion
These three case studies are just a few examples of the
many ways that ConnecTF will be able to facilitate the sys-
tems biology cycle of network generation, refinement, and
validation across the plant community. Importantly, it is a
user-friendly platform that will enable researchers to inte-
grate the vast amount of diverse TF–target validation data-
sets to refine/prune inferred GRNs. We will host and
maintain databases for the plant species Arabidopsis, maize,
and rice. Importantly, we built the ConnecTF framework
with common software packages and a species-independent
structure. Thus, it is possible for users to easily set up an in-
stance of ConnecTF for any species of interest, and/or add
new features and analysis tools. We provide detailed instruc-
tions on how to build private and/or public versions of
ConnecTF for users interested in creating a database with
their own data, and encourage researchers to do so for their
species of interest. As more TF-centric data is generated, we
expect ConnecTF to be a powerful and easy-to-use tool to
integrate validated interactions into transcriptional regula-
tory networks in plants and other species.

Materials and methods

Validation of TF-regulated targets in isolated plant
cells
To identify the direct regulated targets of the 14 TFs in the
ABA pathway that had both in planta ChIP (Song et al.,

2016) and cis-binding motifs available (Weirauch et al.,
2014), we expressed the TFs in isolated root cells using the
TARGET system, using the transient expression vectors de-
scribed in Brooks et al. (2019) as follows. Arabidopsis Col-0
plants were grown in 1% w/v sucrose, 0.5 g L–1 MES, 0.5�
MS basal salts (–CN), 2% (w/v) agar, pH 5.7 for 10 d. Light
conditions were 120 lmol m–2 s–1 at constant temperature
at 22�C, 16 h light, 8 h dark. Roots were harvested and
stirred with cellulase and macerozyme (Yakult, Japan) for 3
h to remove the cell wall. Root protoplasts were filtered
through 70-mm and then 40-mm cell strainers (BD Falcon,
USA) and pelleted at 500g. Filtered root cells were washed
with 15 mL MMg buffer (400-mM mannitol, 10-mM MgCl2,
4-mM MES pH 5.7) and resuspended to between 2–3 �
106 cells per mL. Transfections of root cells with plasmid
vectors described below were performed in a 50-mL conical
tube by mixing 1 mL of root cell suspension with 120 lg of
plasmid DNA, 1 mL of PEG solution (40% (w/v) polyethyl-
ene glycol 4000 (Millipore Sigma, USA), 400-mM mannitol,
and 50-mM CaCl2) and vortexed gently for 5 s. After mixing,
50 mL of W5 buffer (154-mM NaCl, 125-mM CaCl2, 5-mM
KCl, 5-mM MES, 5-mM glucose, pH 5.7) was added to the
tube. Root cells were pelleted at 1,200g, and washed three
times with W5 buffer. Cells transfected with either an empty
vector (EV) as a control, or a single TF cloned in the
pBOB11 plasmid vector containing an RFP selectable marker
(pBOB11, available at https://gatewayvectors.vib.be/collec
tion (Bargmann et al., 2013)) and another batch of cells
were transfected with a single TF in the pBOB11-GFP plas-
mid vector (pBOB11-GFP, available at https://gatewayvec
tors.vib.be/collection (Brooks et al., 2019)) were aliquoted
into three replicate wells of a 24-well plate. The following
day (18 h) after TF expression and translation, transfected
root protoplasts were treated with 35-mM CHX for 20 min
before a 10-mM DEX treatment to induce TF nuclear import.
Transfected root cells expressing each TF or EV were sorted
into GFP and RFP-expressing root cell populations by FACS
3 h after DEX treatment.

To identify TF-regulated genes, transcriptome analysis was
performed. For this, cells expressing the candidate TF vs. EV
were collected in triplicate and RNA-Seq libraries were pre-
pared from their mRNA using the NEBNextVR UltraTM RNA
Library Prep Kit for IlluminaVR . The RNA-Seq libraries were
pooled and sequenced on the Illumina NextSeq 500 plat-
form. The RNA-Seq reads were aligned to the TAIR10 ge-
nome assembly using HISAT2 (Kim et al., 2019) and gene
expression estimated using the GenomicFeatures/
GenomicAlignments packages (Lawrence et al., 2013). Gene
count tables were combined for each TF sample and the EV
and differentially expressed genes in the TF transfected sam-
ples vs. the EV samples were identified using the DESeq2
package (Love et al., 2014) with a TF + Batch model and an
FDR adjusted P 5 0.05. We filtered out genes that respond
more than 5-fold to CHX treatment in EV transfected proto-
plasts (Brooks et al., 2019) from the lists of TF-regulated
gene targets. Genes that are expressed in any of the TF- or
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EV-transfected protoplast experiments were used as the
background for subsequent enrichment analyses in
ConnecTF (Supplemental Table S9).

Reanalysis of rice TF–target datasets
NCBI GEO and SRA databases were queried for sequencing
data related to TF perturbations of any rice TFs. We exam-
ined the ChIP-seq data and RNA-seq data for TF overexpres-
sion and loss-of-function lines. TF-regulated genes identified
by differential expression (RNA-seq) and TF-bound genes
(ChIP-seq) in supplemental files from published papers were
added to ConnecTF only if the list was comprehensive (e.g.
for the whole genome) and if the dataset included more
than one replicate for each condition. If this information
was not provided, we re-processed the raw sequencing reads
from SRA and aligned them to the MSU7 genome
(Kawahara et al., 2013). For RNA-seq, raw sequences were
trimmed by fastp 0.19.10 (Chen et al., 2018) and aligned to
the genome using STAR 2.5.3a (Dobin et al., 2012). The gene
counts matrices were generated by featureCounts 1.6.3 (Liao
et al., 2013) and differentially expressed genes were called
with DESeq2 (Love et al., 2014) with a FDR5 0.05. For
ChIP-seq, raw sequences were trimmed by fastp 0.19.10 and
aligned to the genome using Bowtie2 2.3.4 (Langmead and
Salzberg, 2012). Duplicated reads were removed by
samblaster 0.1.24 (Faust and Hall, 2014). Reads with MAPQ
score lower than 10 were removed by samtools 1.9 (Li et al.,
2009). MACS2 (Zhang et al., 2008) was used to call peaks
and bedtools closest (Quinlan and Hall, 2010) was used to
identify bound genes (within 2 kb upstream and down-
stream). If ChIP-seq peaks files were provided by the
authors, we used those to identify TF-bound genes.

TF–target list enrichment
Target list enrichment calculates the significance of the over-
lap between TF–targets in each queried TF analysis and
each user-uploaded gene list. The P-values are calculated us-
ing the Fisher’s exact test adjusted with the Bonferroni cor-
rection. The background set of genes used for the
calculation, which is by default all protein-coding genes for
the Arabidopsis, rice (Oryza sativa) and maize (Zea mays)
instances of ConnecTF, can be manually set by the user by
using the Background Genes option in the query page.

cis-motif enrichment
Arabidopsis, rice, and maize cis-binding motif PWMs were
collected from Cis-BP (Weirauch et al., 2014; Build 2.0) and
the 80 cis-motif clusters of Arabidopsis were obtained from
Brooks et al. (2019) and converted to MEME format. The
FIMO tool (Grant et al., 2011) within the MEME package
(Bailey et al., 2009) was used to identify every occurrence of
each cis-binding motif in the nuclear genome (i.e. excluding
mitochondrial and chloroplast chromosomes) at a P 5
0.0001 using the base frequency in the nuclear genome as
the background model.

We chose to remove overlapping sites for the same cis-
binding motifs, which are particularly common for repetitive

motifs. For each cis-binding motif, when two sites overlap,
the match with the lowest P-value is kept, and the other is
removed until only non-overlapping matches remain. The
number of matches for each cis-binding motif is tallied for
each individual gene region, subdivided into 2,000, 1,000,
and 500 bp upstream of transcription start site, the 5’ and
3’ UTRs, CDS, intron, exon, and the full region transcribed
into mRNA (cDNA). If a match is found to be within a re-
gion shared by more than one gene, it is counted for all the
genes that it is associated with.

To calculate enrichment of a cis-binding motif or cis-motif
cluster for a particular individual TF within a given region in
a target gene of a queried analysis, the Fisher’s exact test
was used with a background of all individual cis-binding
motifs or cis-motif clusters within that gene region, respec-
tively. As in Target List Enrichment, a user can upload a list
of genes to use as the background, or use the default of all
protein-coding genes. The P-values are adjusted with the
Bonferroni correction method.

If a target gene list (e.g. genes in a pathway of interest) is
provided by the user, ConnecTF can also calculate the cis-
binding motif enrichment for that gene list(s), separately.
The P-values of motif enrichment on gene lists is adjusted
with the Bonferroni correction as a group, independent of
the correction performed on the queried analyses.

Gene set enrichment
The gene set enrichment tool (Katari et al., 2010; Krouk et
al., 2010) calculates the significance of overlap between all
possible pairwise combinations of target gene lists identified
for any TF–targets queried. Significance of overlap is calcu-
lated using the one-sided Fisher’s exact test, using the de-
fault background of all protein coding genes, or the user
uploaded background. On the resulting grid, cells above the
diagonal report the P-value for the upper tail (greater or
equal to the observed overlap) and cells below the diagonal
report the P-value for the lower tail (lesser or equal to the
observed overlap). All the P-values are adjusted with the
Bonferroni correction.

Sungear, a visualization method for gene set
overlaps
Sungear (Poultney et al., 2006) is a tool to display/visual over-
laps between gene lists resulting from different queries, similar
to a Venn diagram or UpSet plot (Lex et al., 2014). The verti-
ces on the outer polygon are anchor points, containing gene
lists for each TF-analysis queried. Circular nodes within the
polygon represent gene sets that are unique to or in common
between the indicated lists of genes in the vertices, based on
their position between the vertices. Each node has one or
more arrows pointing to the vertices corresponding to the
analyses that contain the genes. The gene sets exclusively
found in that node represents the specific combination of
analyses. The position of the node is approximately the mid-
way point between the combination of analyses it represents.

In our implementation of Sungear within ConnecTF, we
enhanced the graph by calculating a P-value, which indicates
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whether a node contains greater or fewer overlap of genes
than expected given the total number of targets regulated
by each of the queried analyses. Calculation was performed
using the following method.

Let us say there are n lists, each containing x1, x2 . . . xn

number of genes, with a total of x genes.

x ¼
Xn

i¼1

xi

If a node A1;2;4 indicates genes that are exclusively in com-
mon with lists 1, 2, and 4. Then the expectation value, e, of
a gene being in that node can be calculated from multiply-
ing probability of being in the gene list and not being in the
gene list respectively and x.

eA1;2;4
¼ x1

x

� �
� x2

x

� �
� x4

x

� �
� 1� x3

x

� �
� 1� x5

x

� �
� . . .

� 1� xn

x

� �
x

This will be a binomial distribution, where success is de-
fined as the number of genes in the node A, and the failure
is the number of genes not in node A (total genes – num-
ber of genes in node A). The P-value is calculated for each
node by comparing the observed value to the expected
value using the binomial test and adjusted using the
Bonferroni correction.

Code availability
The source code including instructions for setting up a pub-
lic or private instance of ConnecTF is available at https://
github.com/coruzzilab/connectf_server.

Accession numbers
All raw sequencing data from this project have been depos-
ited in the Gene Expression Omnibus (GEO) database,
https://www.ncbi.nlm.nih.gov/geo (accession no.
GSE152405).
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Supplemental Figure S1. Diagram of ConnecTF from
data to analysis tools.

Supplemental Figure S2. Case study 2: Precision/recall
analysis on the Atted-II co-expression network.

Supplemental Figure S3. Case study 3: Enrichment of TF2

targets with NLP7 indirect targets reveals influential down-
stream TFs.

Supplemental Data File. ConnecTF queries used to gen-
erate figures and tables.

Supplemental Table S1. Overview of the data in the
maize and rice instances of ConnecTF.

Supplemental Table S2. Direct regulated targets of 14
ABA-responsive TFs identified using the TARGET system in
root cells.

Supplemental Table S3. Table of results for NLP7 targets
collected from each of the NLP7 experiments in ConnecTF.

Supplemental Table S4. Case study 1: Enrichment of
ABA-responsive genes in the induced or repressed direct
regulated TF-regulated targets.

Supplemental Table S5. Case study 1: Motif enrichment
in induced or repressed direct regulated TF targets.

Supplemental Table S6. Case study 1: Genes set enrich-
ment of induced or repressed direct regulated TF targets in
cells with in vitro TF-bound targets (DAP-seq).

Supplemental Table S7. Case study 1: Genes set enrich-
ment of induced or repressed direct regulated TF targets in
cells with in vivo TF-bound targets (ChIP-seq).
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TF–targets.
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